The following article requires a subscription:



(Format: HTML, PDF)

Background: The increasing use of extended criteria donors (ECD) sets higher requirements for graft preservation. Machine perfusion (MP) improves orthotopic liver transplantation (OLT) outcomes, but its effects on different donor types remains unclear. The authors' aim was to assess the effects of hypothermic machine perfusion (HMP), normothermic machine perfusion (NMP), or normothermic regional perfusion (NRP) versus static cold storage (SCS) on different donor types.

Materials and methods: A literature search comparing the efficacy of MP versus SCS in PubMed, Cochrane, and EMBASE database was conducted. A meta-analysis was performed to obtain pooled effects of MP on ECD, donation after circulatory death (DCD), and donor after brainstem death.

Results: Thirty nine studies were included (nine randomized controlled trials and 30 cohort studies). Compared with SCS, HMP significantly reduced the risk of non-anastomotic biliary stricture (NAS) [odds ratio (OR) 0.43, 95% confidence interval (CI) 0.26-0.72], major complications (OR 0.55, 95% CI 0.39-0.78), and early allograft dysfunction (EAD) (OR 0.46, 95% CI 0.32-0.65) and improved 1-year graft survival (OR 2.36, 95% CI 1.55-3.62) in ECD-OLT. HMP also reduced primary non-function (PNF) (OR 0.40, 95% CI 0.18-0.92) and acute rejection (OR 0.62, 95% CI 0.40-0.97). NMP only reduced major complications in ECD-OLT (OR 0.56, 95% CI 0.34-0.94), without favorable effects on other complications and survival. NRP lowered the overall risk of NAS (OR 0.27, 95% CI 0.11-0.68), PNF (OR 0.43, 95% CI 0.22-0.85), and EAD (OR 0.58, 95% CI 0.42-0.80) and meanwhile improved 1-year graft survival (OR 2.40, 95% CI 1.65-3.49) in control DCD-OLT.

Conclusions: HMP might currently be considered for marginal livers as it comprehensively improves ECD-OLT outcomes. NMP assists some outcomes in ECD-OLT, but more evidence regarding NMP-ECD is warranted. NRP significantly improves DCD-OLT outcomes and is recommended where longer non-touch periods exist.

(C) 2023 by Lippincott Williams & Wilkins, Inc.