The following article requires a subscription:

(Format: HTML, PDF)

Venous and arterial thromboembolism are major complications of myeloproliferative neoplasms (MPNs), comprising polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Global hemostasis assays, including thrombin generation assay (TGA), rotational thromboelastometry (ROTEM), and thromboelastography (TEG), have been proposed as biomarkers to assess the hypercoagulability and thrombotic risk stratification in MPNs. We performed a systematic literature review on the parameters of TGA, ROTEM, and TEG and their association with thrombotic events and treatment strategies in MPNs. Thirty-two studies (all cross-sectional) were included, which collectively enrolled 1,062 controls and 1,608 MPN patients. Among the 13 studies that reported arterial or venous thrombosis, the overall thrombosis rate was 13.8% with 6 splanchnic thromboses reported. Out of the 27 TGA studies, there was substantial heterogeneity in plasma preparation and trigger reagents employed in laboratory assays. There was a trend toward increased peak height among all MPN cohorts versus controls and higher endogenous thrombin potential (ETP) between ET patients versus controls. There was an overall trend toward lower ETP between PV and PMF patients versus. controls. There were no substantial differences in ETP between JAK2-positive versus JAK2-negative MPNs, prior history versus negative history of thrombotic events, and among different treatment strategies. Of the three ROTEM studies, there was a trend toward higher maximum clot firmness and shorter clot formation times for all MPNs versus controls. The three TEG studies had mixed results. We conclude that the ability of parameters from global hemostasis assays to predict for hypercoagulability events in MPN patients is inconsistent and inconclusive. Further prospective longitudinal studies are needed to validate these biomarker tools so that thrombotic potential could be utilized as a primary endpoint of such studies.

Copyright (C) 2024 by Thieme