The following article requires a subscription:



(Format: HTML, PDF)

The novel coronavirus disease 2019 (COVID-19) has led to a serious global pandemic. Although an oxidative stress imbalance occurs in COVID-19 patients, the contributions of thiol/disulphide homeostasis and nitric oxide (NO) generation to the pathogenesis of COVID-19 have been poorly identified. Therefore, the aim of this study was to evaluate the effects of antiviral drug therapy on the serum dynamics of thiol/disulphide homeostasis and NO levels in COVID-19 patients. A total of 50 adult patients with COVID-19 and 43 sex-matched healthy control subjects were enrolled in this prospective study. Venous blood samples were collected immediately on admission to the hospital within 24 h after the diagnosis (pre-treatment) and at the 15th day of drug therapy (post-treatment). Serum native thiol and total thiol levels were measured, and the amounts of dynamic disulphide bonds and related ratios were calculated. The average pre-treatment total and native thiol levels were significantly lower than the post-treatment values (P < 0.001 for all). We observed no significant changes in disulphide levels or disulphide/total thiol, disulphide/native thiol, or native thiol/total thiol ratios between pre- and post-treatments. There was also a significant increase in serum NO levels in the pre-treatment values when compared to control (P < 0.001) and post-treatment measurements (P < 0.01). Our results strongly suggest that thiol/disulphide homeostasis and nitrosative stress can contribute to the pathogenesis of COVID-19. This study was the first to show that antiviral drug therapy can prevent the depletion in serum thiol levels and decrease serum NO levels in COVID-19 patients.

(C) 2021Elsevier, Inc.