The following article requires a subscription:



(Format: HTML, PDF)

The effect of increased dietary intakes of [alpha]-linolenic acid (ALNA) or eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 2 months upon plasma lipid composition and capacity for conversion of ALNA to longer-chain metabolites was investigated in healthy men (52 (SD 12) years). After a 4-week baseline period when the subjects substituted a control spread, a test meal containing [U-13C]ALNA (700 mg) was consumed to measure conversion to EPA, docosapentaenoic acid (DPA) and DHA over 48 h. Subjects were then randomised to one of three groups for 8 weeks before repeating the tracer study: (1) continued on same intake (control, n 5); (2) increased ALNA intake (10 g/d, n 4); (3) increased EPA DHA intake (1[middle dot]5 g/d, n 5). At baseline, apparent fractional conversion of labelled ALNA was: EPA 2[middle dot]80, DPA 1[middle dot]20 and DHA 0[middle dot]04 %. After 8 weeks on the control diet, plasma lipid composition and [13C]ALNA conversion remained unchanged compared with baseline. The high-ALNA diet resulted in raised plasma triacylglycerol-EPA and -DPA concentrations and phosphatidylcholine-EPA concentration, whilst [13C]ALNA conversion was similar to baseline. The high-(EPA DHA) diet raised plasma phosphatidylcholine-EPA and -DHA concentrations, decreased [13C]ALNA conversion to EPA (2-fold) and DPA (4-fold), whilst [13C]ALNA conversion to DHA was unchanged. The dietary interventions did not alter partitioning of ALNA towards [beta]-oxidation. The present results indicate ALNA conversion was down-regulated by increased product (EPA DHA) availability, but was not up-regulated by increased substrate (ALNA) consumption. This suggests regulation of ALNA conversion may limit the influence of variations in dietary n-3 fatty acid intake on plasma lipid compositions.

Copyright (C) 2003 The Nutrition Society