The following article requires a subscription:



(Format: HTML, PDF)

: It has been previously reported that amiloride suppresses inflammatory cytokine biosynthesis. However, the molecular mechanism involved has yet to be ascertained. Therefore, the immunoregulatory potential mediated by amiloride and the underlying signaling transduction pathway was investigated. Exposure of alveolar epithelial cells to amiloride or its analog, 5-(N,N-hexamethylene)-amiloride (HMA), reduced, in a dose-dependent manner, lipopolysaccharide (LPS)-induced secretion of interleukin (IL)-1 [beta] and tumor necrosis factor (TNF)- [alpha]. This inhibitory effect was associated with the augmentation of a counter antiinflammatory response, mediated by IL-6 and IL-10. Analysis of the mechanism implicated revealed the involvement of an inhibitory [kappa] B (I [kappa] B- [alpha] )/nuclear factor [kappa] B (NF- [kappa] B)-sensitive pathway. Amiloride and HMA suppressed the phosphorylation of I [kappa] B- [alpha] mediated by LPS, thereby allowing its cytosolic accumulation. Furthermore, both inhibitors interfered with the nuclear translocation of selective NF- [kappa] B subunits, an effect associated with blockading the DNA-binding activity of NF- [kappa] B. Recombinant IL-10 blockaded LPS-induced biosynthesis of IL-1 [beta] and TNF- [alpha] and reduced NF- [kappa] B activation. Immunoneutralization of endogenous IL-10 reversed the inhibitory effect of amiloride on proinflammatory cytokines and restored the DNA-binding activity of NF- [kappa] B. These results indicate that amiloride acts as a novel dual immunoregulator in the alveolar epithelium: it downregulates an inflammatory signal and at the same time upregulates an antiinflammatory response. This biphasic effect is IL-10 sensitive and is associated with the selective targeting of the I [kappa] B- [alpha] /NF- [kappa] B signaling transduction pathway.

(C) 2002 American Thoracic Society