The following article requires a subscription:



(Format: HTML, PDF)

McGill, SM, and Marshall, LW. Kettlebell swing, snatch, and bottoms-up carry: Back and hip muscle activation, motion, and low back loads. J Strength Cond Res 26(1): 16-27, 2012-The intent of this study was to quantify spine loading during different kettlebell swings and carries. No previously published studies of tissue loads during kettlebell exercises could be found. Given the popularity of kettlebells, this study was designed to provide an insight into the resulting joint loads. Seven male subjects participated in this investigation. In addition, a single case study of the kettlebell swing was performed on an accomplished kettlebell master. Electromyography, ground reaction forces (GRFs), and 3D kinematic data were recorded during exercises using a 16-kg kettlebell. These variables were input into an anatomically detailed biomechanical model that used normalized muscle activation; GRF; and spine, hip, and knee motion to calculate spine compression and shear loads. It was found that kettlebell swings create a hip-hinge squat pattern characterized by rapid muscle activation-relaxation cycles of substantial magnitudes (~50% of a maximal voluntary contraction [MVC] for the low back extensors and 80% MVC for the gluteal muscles with a 16-kg kettlebell) resulting in about 3,200 N of low back compression. Abdominal muscular pulses together with the muscle bracing associated with carries create kettlebell-specific training opportunities. Some unique loading patterns discovered during the kettlebell swing included the posterior shear of the L4 vertebra on L5, which is opposite in polarity to a traditional lift. Thus, quantitative analysis provides an insight into why many individuals credit kettlebell swings with restoring and enhancing back health and function, although a few find that they irritate tissues.

Copyright (C) 2012 by the National Strength & Conditioning Association.