The following article requires a subscription:



(Format: HTML, PDF)

Recently there has been a dramatic rise in the abuse of so-called "bath salts' products that are purchased as legal alternatives to illicit drugs like cocaine and 3,4-methylenedioxymethamphetamine (MDMA). Baths salts contain one or more synthetic derivatives of the naturally-occurring stimulant cathinone. Low doses of bath salts produce euphoria and increase alertness, but high doses or chronic use can cause serious adverse effects such as hallucinations, delirium, hyperthermia and tachycardia. Owing to the risks posed by bath salts, the governments of many countries have made certain cathinones illegal, namely: 4-methylmethcathinone (mephedrone), 3,4-methylenedioxymethcathinone (methylone) and 3,4-methylenedioxypyrovalerone (MDPV). Similar to other psychomotor stimulants, synthetic cathinones target plasma membrane transporters for dopamine (i.e., DAT), norepinephrine (i.e., NET) and serotonin (i.e, SERT). Mephedrone and methylone act as non-selective transporter substrates, thereby stimulating non-exocytotic release of dopamine, norepinephrine and serotonin. By contrast, MDPV acts as a potent blocker at DAT and NET, with little effect at SERT. Administration of mephedrone or methylone to rats increases extracellular concentrations of dopamine and serotonin in the brain, analogous to the effects of MDMA. Not surprisingly, synthetic cathinones elicit locomotor activation in rodents. Stimulation of dopamine transmission by synthetic cathinones predicts a high potential for addiction and may underlie clinical adverse effects. As popular synthetic cathinones are rendered illegal, new replacement cathinones are appearing in the marketplace. More research on the pharmacology and toxicology of abused cathinones is needed to inform public health policy and develop strategies for treating medical consequence of bath salts abuse.

(C) 2013Elsevier, Inc.