The following article requires a subscription:



(Format: HTML, PDF)

For this work, Lotus japonicus transgenic plants were constructed expressing a fusion reporter gene consisting of the genes [beta]-glucuronidase (gus) and green fluorescent protein (gfp) under control of the soybean auxin-responsive promoter GH3. These plants expressed GUS and GFP in the vascular bundle of shoots, roots and leafs. Root sections showed that in mature parts of the roots GUS is mainly expressed in phloem and vascular parenchyma of the vascular cylinder. By detecting GUS activity, we describe the auxin distribution pattern in the root of the determinate nodulating legume L. japonicus during the development of nodulation and also after inoculation with purified Nod factors, N-naphthylphthalamic acid (NPA) and indoleacetic acid (IAA). Differently than white clover, which forms indeterminate nodules, L. japonicus presented a strong GUS activity at the dividing outer cortical cells during the first nodule cell divisions. This suggests different auxin distribution pattern between the determinate and indeterminate nodulating legumes that may be responsible of the differences in nodule development between these groups. By measuring of the GFP fluorescence expressed 21 days after treatment with Nod factors or bacteria we were able to quantify the differences in GH3 expression levels in single living roots. In order to correlate these data with auxin transport capacity we measured the auxin transport levels by a previously described radioactive method. At 48 h after inoculation with Nod factors, auxin transport showed to be increased in the middle root segment. The results obtained indicate that L. japonicus transformed lines expressing the GFP and GUS reporters under the control of the GH3 promoter are suitable for the study of auxin distribution in this legume.

(C)2003 Kluwer Academic Publishers