The following article requires a subscription:



(Format: HTML, PDF)

: The evolutionary origins and variations of the precision grip, in which an object is held between the thumb and other digits, are poorly understood. This is surprising because the neural basis of this grasp pattern, including the motor cortex and pyramidal tract have received extensive study. Most previous work has shown that features of an object to be grasped (external factors) determine grasp patterns. The objective of the present study was to investigate individual differences (central factors) in use of the pincer and other precision grips. The grasping patterns of male and female young adults, older adults and children were examined as they reached (with both left and right hand) for five small beads (3-16mm diameter). Frame-by-frame analysis of grasping indicated a high degree of variability in digit contact strategies, purchase patterns and digit posture both within and between subjects. (1) The contact strategies consisted of five variations, depending on whether the thumb or the index finger dragged or stabilized the bead for grasping. (2) Purchase patterns consisted of seven different types of precision grips, involving the thumb and various combinations of other digits. (3) There were four variations stemming from the posture of the non-grasping digits. Grip patterns of the left and right hands were correlated in individual subjects, as were strategies used for different bead sizes. Females displayed slightly more variability in grasp patterns than did males, and digit width (obtained from photocopies of the subjects' hands) was weakly correlated with the grasp patterns used. Although it was expected that the pincer would be used for all objects, it was preferentially used for only the smallest object except for older adults who used the pincer grasp on most objects. The variability in digit contact strategies, purchase patterns, and posture of the non-grasping digits indicates that central factors (innate or learning-induced architecture of the left parietal cortex) make important contributions to the selection of a grasping pattern. These individual differences are discussed in relation to the neural control of grasping and its potential contribution to understanding the evolution, development, and pathology of the precision grip.

(C) 2004Elsevier, Inc.