The following article requires a subscription:



(Format: HTML, PDF)

: The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene is located within the Down Syndrome (DS) critical region on chromosome 21 and is implicated in the generation of Tau and amyloid pathologies that are associated with the early onset Alzheimer's Disease (AD) observed in DS. DYRK1A is also found associated with neurofibrillary tangles in sporadic AD and phosphorylates key AD players (Tau, amyloid precursor, protein, etc). Thus, DYRK1A may be an important therapeutic target to modify the course of Tau and amyloid beta (A[beta]) pathologies. Here, we describe EHT 5372 (methyl 9-(2,4-dichlorophenylamino) thiazolo[5,4-f]quinazoline-2-carbimidate), a novel, highly potent (IC50 = 0.22 nM) DYRK1A inhibitor with a high degree of selectivity over 339 kinases. Models in which inhibition of DYRK1A by siRNA reduced and DYRK1A over-expression induced Tau phosphorylation or A[beta] production were used. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation at multiple AD-relevant sites in biochemical and cellular assays. EHT 5372 also normalizes both A[beta]-induced Tau phosphorylation and DYRK1A-stimulated A[beta] production. DYRK1A is thus as a key element of A[beta]-mediated Tau hyperphosphorylation, which links Tau and amyloid pathologies. EHT 5372 and other compounds in its class warrant in vivo investigation as a novel, high-potential therapy for AD and other Tau opathies.

(C) 2015 International Society for Neurochemistry