The following article requires a subscription:



(Format: HTML, PDF)

Background: Anesthetic agents, especially volatile anesthetics and nitrous oxide (N2O), are suspected to perturb cerebral homeostasis and vascular reactivity. The authors quantified the effects of sevoflurane and propofol as sole anesthetics and in combination with N2O on regional cerebral blood flow (rCBF), metabolic rate of oxygen (rCMRO2), and blood volume (rCBV) in the living human brain using positron emission tomography.

Methods: 15O-labeled water, oxygen, and carbon monoxide were used as positron emission tomography tracers to determine rCBF, rCMRO2 and rCBV, respectively, in eight healthy male subjects during the awake state (baseline) and at four different anesthetic regimens: (1) sevoflurane alone, (2) sevoflurane plus 70% N2O (S N), (3) propofol alone, and (4) propofol plus 70% N2O (P N). Sevoflurane and propofol were titrated to keep a constant hypnotic depth (Bispectral Index 40) throughout anesthesia. End-tidal carbon dioxide was strictly kept at preinduction level.

Results: The mean /- SD end-tidal concentration of sevoflurane was 1.5 /- 0.3% during sevoflurane alone and 1.2 /- 0.3% during S N (P < 0.001). The measured propofol concentration was 3.7 /- 0.7 [mu]g/ml during propofol alone and 3.5 /- 0.7 [mu]g/ml during P N (not significant). Sevoflurane alone decreased rCBF in some (to 73-80% of baseline, P < 0.01), and propofol in all brain structures (to 53-70%, P < 0.001). Only propofol reduced also rCBV (in the cortex and cerebellum to 83-86% of baseline, P < 0.05). Both sevoflurane and propofol similarly reduced rCMRO2 in all brain areas to 56-70% and 50-68% of baseline, respectively (P < 0.05). The adjunct N2O counteracted some of the rCMRO2 and rCBF reductions caused by drugs alone, and especially during S N, a widespread reduction (P < 0.05 for all cortex and cerebellum vs. awake) in the oxygen extraction fraction was seen. Adding of N2O did not alter the rCBV effects of sevoflurane and propofol alone.

Conclusions: Propofol reduced rCBF and rCMRO2 comparably. Sevoflurane reduced rCBF less than propofol but rCMRO2 to an extent similar to propofol. These reductions in flow and metabolism were partly attenuated by adjunct N2O. S N especially reduced the oxygen extraction fraction, suggesting disturbed flow-activity coupling in humans at a moderate depth of anesthesia.

(C) 2003 American Society of Anesthesiologists, Inc.