The following article requires a subscription:



(Format: HTML, PDF)

The glutamatergic signaling pathway represents an ideal candidate susceptibility system for attention-deficit/hyperactivity disorder (ADHD). Disruption of specific N-methyl-D-aspartate-type glutamate receptor subunit genes (GRIN1, 2A-D) in mice leads to significant alterations in cognitive and/or locomotor behavior including impairments in latent learning, spatial memory tasks and hyperactivity. Here, we tested for association of GRIN2B variants with ADHD, by genotyping nine single nucleotide polymorphisms (SNPs) in 205 nuclear families identified through probands with ADHD. Transmission of alleles from heterozygous parents to affected offspring was examined using the transmission/disequilibrium test. Quantitative trait analyses for the ADHD symptom dimensions [inattentive (IA) and hyperactive/impulsive (HI)] and cognitive measures of verbal working memory and verbal short-term memory were performed using the FBAT program. Three SNPs showed significantly biased transmission (P < 0.05), with the strongest evidence of association found for rs2284411 ([chi]2= 7.903, 1 degree of freedom, P= 0.005). Quantitative trait analyses showed associations of these markers with both the IA and the HI symptom dimensions of ADHD but not with the cognitive measures of verbal short-term memory or verbal working memory. Our data suggest an association between variations in the GRIN2B subunit gene and ADHD as measured categorically or as a quantitatively distributed trait.

Copyright (C) 2007 Blackwell Publishing Ltd.