The following article requires a subscription:



(Format: HTML, PDF)

The metalloprotease ADAM 10 is an important APP [alpha]-secretase candidate, but in vivo proof of this is lacking. Furthermore, invertebrate models point towards a key role of the ADAM 10 orthologues Kuzbanian and sup-17 in Notch signalling. In the mouse, this function is, however, currently attributed to ADAM 17/TACE, while the role of ADAM 10 remains unknown. We have created ADAM 10-deficient mice. They die at day 9.5 of embryogenesis with multiple defects of the developing central nervous system, somites, and cardiovascular system. In situ hybridization revealed a reduced expression of the Notch target gene hes-5 in the neural tube and an increased expression of the Notch ligand dll-1, supporting an important role for ADAM 10 in Notch signalling in the vertebrates as well. Since the early lethality precluded the establishment of primary neuronal cultures, APPs[alpha] generation was analyzed in embryonic fibroblasts and found to be preserved in 15 out of 17 independently generated ADAM 10-deficient fibroblast cell lines, albeit at a quantitatively more variable level than in controls, whereas a severe reduction was found in only two cases. The variability was not due to differences in genetic background or to variable expression of the alternative [alpha]-secretase candidates ADAM 9 and ADAM 17. These results indicate, therefore, either a regulation between ADAMs on the post-translational level or that other, not yet known, proteases are able to compensate for ADAM 10 deficiency. Thus, the observed variability, together with recent reports on tissue-specific expression patterns of ADAMs 9, 10 and 17, points to the existence of tissue-specific 'teams' of different proteases exerting [alpha]-secretase activity.

(C) Copyright Oxford University Press 2002.