The following article requires a subscription:



(Format: HTML, PDF)

Signaling networks play important roles in cancer progression. For example, overexpression of the epidermal growth factor receptor (EGFR) is a poor prognostic indicator in multiple tumor types. Recent studies have postulated that the EGFR functions as a central conduit for signaling by different classes of cell surface receptors. In this study, we demonstrated that c-Src-dependent phosphorylation of tyrosine 845 (Tyr 845) on EGFR was required for DNA synthesis induced by the G protein-coupled agonists, endothelin (ET) and lysophosphatidic acid (LPA), and the cytokine, growth hormone (GH), in murine fibroblast and breast cancer model systems. In addition, we showed that a dominant interfering form of signal transducer and activator of transcription (STAT)5b (a downstream effector of phospho-Tyr 845 [pY845] in fibroblasts) abrogates DNA synthesis induced by all agonists in the breast cancer model. To further characterize the role of Tyr 845, a pY845-containing peptide was microinjected into SKBr3 breast cancer cells and murine fibroblasts, and was found to ablate EGF-stimulated S-phase entry in both cell systems. Taken together, these findings suggested that pY845 is critical for DNA synthesis induced by a variety of mitogens and that its signaling effectors may include but are not limited to STAT5b. (C) 2005 Wiley-Liss, Inc.

Copyright (C) 2005 John Wiley & Sons, Inc.