The following article requires a subscription:



(Format: HTML, PDF)

Programmed cell death is known to be an essential process for accurate ontogeny during the normal development of the inner ear. The inner ear is a complex sensory organ responsible for equilibrium and sound detection in vertebrates. In all vertebrates, the inner ear develops from a single ectodermic patch on the surface of the embryo's head, which undergoes a series of morphological changes to give rise to the complex structure of the adult inner ear. Enlargement and morphogenesis of the inner ear primordium is likely to depend on cellular division, growth, migration, differentiation and apoptosis. Here we describe the regions of programmed cell death that contribute to the final morphological aspect of the adult inner ear. The few studies that focus on the molecules that control this process during inner ear development indicate that the molecules and intracellular signaling pathways activated during the apoptotic response in the inner ear are similar to the previously described for the nervous system. In this review, we will describe some of the growth factors and key pathways that regulate pro- and anti-apoptotic signals and how they cross talk to determine the apoptotic or survival fate of cells in the development of the inner ear.

(C)2004 Kluwer Academic Publishers