The following article requires a subscription:



(Format: HTML, PDF)

Since the discovery of high-transition-temperature (high-Tc) superconductivity in layered copper oxides, extensive effort has been devoted to exploring the origins of this phenomenon. A Tc higher than 40 K (about the theoretical maximum predicted from Bardeen-Cooper-Schrieffer theory 1), however, has been obtained only in the copper oxide superconductors. The highest reported value for non-copper-oxide bulk superconductivity is Tc = 39 K in MgB2 (ref. 2). The layered rare-earth metal oxypnictides LnOFeAs (where Ln is La-Nd, Sm and Gd) are now attracting attention following the discovery of superconductivity at 26 K in the iron- based LaO1 - xFxFeAs (ref. 3). Here we report the discovery of bulk superconductivity in the related compound SmFeAsO1 - xFx, which has a ZrCuSiAs-type structure. Resistivity and magnetization measurements reveal a transition temperature as high as 43 K. This provides a new material base for studying the origin of high-temperature superconductivity.

(C) 2008 Nature Publishing Group