The following article requires a subscription:



(Format: HTML)

Summary: Congenital hyperinsulinism (HI), the most important cause of hypoglycaemia in early infancy, is a heterogeneous disease with two types of histological lesions, focal and diffuse, with major consequences in terms of surgical approaches. In contrast to focal islet-cell hyperplasia, always sporadic to our knowledge, diffuse hyperinsulinism is a heterogeneous disorder involving several genes, various mechanisms of pathogenic mutations and different transmissions: (i) channelopathy involving the genes encoding the sulphonylurea receptor (SUR1) or the inward-rectifying potassium channel (Kir6.2) in recessively inherited HI or more rarely dominantly inherited HI; (ii) metabolic disorders implicating the short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) enzyme in recessively inherited HI, the glucokinase gene (GK), the glutamate dehydrogenase gene (GLUD1) when hyperammonemia is associated, dominant exercise-induced HI with still-unknown mechanism, and more recently the human insulin receptor gene in dominantly inherited hyperinsulinism. Thus, dominant HI disorders always correspond to diffuse HI, where most hypoglycaemia occur in infancy, and are sensitive to medical treatment. Channel causes could be due to dominant negative mutation with one abnormality in channels composed of four Kir6.2 subunits and four SUR1 subunits, leading to a complete destruction of the channel structure or function, or due to haploinsufficiency with only one functional allele, leading to 50% of functional protein, which is not sufficient to obtain enough opened channels to maintain the membrane depolarized. Metabolic causes are due to a gain of function of enzyme activity (deregulated enzymes), except for physical exercise-induced hyperinsulinaemic hypoglycaemia, of still-unknown cause.

(C)2005 Kluwer Academic Publishers