The following article requires a subscription:



(Format: HTML)

In the intestine, several growth factors stimulate migration of epithelial cells, contributing to the maintenance of tissue integrity. The Ras-like GTPase Rho regulates a signal transduction pathway linking growth factor receptors to the formation of actin stress fibers and focal adhesions, presumed to be important for motility. Using an in vitro wound-induced migration assay, we have examined the role of Rho GTPases in the migration of IEC-6 and Caco-2 cells, and provide evidence that the Rho GTPases play an essential role in the initial phase of mucosal wound healing. Treatment of the cells with Clostridium difficile toxins A and B, inhibitors of the Rho family GTPases inhibited migration in a dose-dependent fashion. Microinjection of the inhibitory exchange factor Rhoguanine nucleotide dissociation inhibitor (GDI), or Clostridium botulinum C3 ADP-ribosyl transferase (C3) toxin, a Rho-ADP-ribosylating exoenzyme, potently inhibited migration. Microinjection of RhoT19N, a dominant negative form of RhoA, or in vitro ADP-ribosylated RhoA impaired the ability of cells to migrate. Rho-GDI and C3 exoenzyme also inhibited EGF-induced migration of IEC-6 cells. These results demonstrate that Rho is required for endogenous and EGF-induced migration of small intestinal crypt cells, and that Rho proteins are essential elements of a mechanism by which growth factors induce cell migration to restitute mucosal integrity. (J. Clin. Invest. 1997. 100:216-225.)

Copyright (C) 1997 The American Society for Clinical Investigation, Inc.