The following article requires a subscription:



(Format: HTML)

Summary: Two key steps control immune responses in mucosal tissues: the sampling and transepithelial transport of antigens, and their targeting into professional antigen-presenting cells in mucosa-associated lymphoid tissue. Live Salmonella bacteria use strategies that allow them to cross the epithelial barrier of the gut, to survive in antigen-presenting cells where bacterial antigens are processed and presented to the immune cells, and to express adjuvant activity that prevents induction of oral tolerance. Two Salmonella serovars have been used as vaccines or vectors, S. typhimurium in mice and S. typhi in humans. S. typhimurium causes gastroenteritis in a broad host range, including humans, while S. typhi infection is restricted to humans. Attenuated S. typhimurium has been used successfully in mice to induce systemic and mucosal responses against more than 60 heterologous antigens. This review aims to revisit S. typhimurium-based vaccination, as an alternative to S. typhi, with special emphasis on the molecular pathogenesis of S. typhimurium and the host response. We then discuss how such knowledge constitutes the basis for the rational design of novel live mucosal vaccines.

(C) 1999 Munksgaard International Publishers Ltd.